
Introduction to Reinforcement Learning

Kim DongHu

CS285 Deep Reinforcement Learning Lecture 2

lato

What is RL?

“Maximizing the expected total reward

within an environment.”
?

?

Introductory Examples

Maximizing the expected total reward within an environment.

Game
(Atari Breakout)

Player

Get as much score as possible in Atari Breakout!

(Robot) Dog

Get as many treats as possible from the trainer!

Trainer

Introductory Examples

Game screen

Left / Right

Game score
Next game screen

…

Game
(Atari Breakout)

Player

Get as much score as possible in Atari Breakout!

See flying frisbee

Jump / Run / …

Treat / No treat
Next throw

…
Trainer

(Robot) Dog

Get as many treats as possible from the trainer!

In RL, an agent performs actions given the states/observations,
in order to maximize the expected total reward within an environment.

Markov Chain
•ℳ = 𝒮,𝒯 , where

𝒮 = Set of possible states

𝒯 = Transition probabilities

𝒮 = {𝐴, 𝐵, 𝐶}

𝒯 =

0 0 1/2
1 2/3 1/2
0 1/3 0

•𝒯 can be expressed as a matrix: 𝒯𝑖,𝑗 = 𝑝 𝑠𝑡+1 = 𝑖 𝑠𝑡 = 𝑗

…which can be used as a state transition operator

e.g.,
0 0 1/2
1 2/3 1/2
0 1/3 0

1/3
1/3
1/3

=

1/6
39/54
1/9

an arbitrary initial state distribution (𝑡 = 1)
state distribution at time 𝑡 = 2

•But why use this? Markov property!

•A fundamental base of RL: “History doesn’t matter”

𝑝 𝑠𝑡+1 = 𝑖 𝑠𝑡 = 𝑗, 𝑠𝑡−1 = 𝑗′, 𝑠𝑡−2 = 𝑗′′, … = 𝑝(𝑠𝑡+1 = 𝑖|𝑠𝑡 = 𝑗)

Transitions in 1,… , 𝑡 − 1 do NOT affect future transitions (independence).

•All future theorems and algorithms will be based on this property!

Markov Property

•Policy Gradient Theorem

•Bellman Equation

•...and many more

Markov property

•Markov Chain + Actions + Rewards

•ℳ = 𝒮,𝒜,𝒯, 𝑟 , where 𝒮 = Set of possible states 𝒯 = Transition probabilities

𝒜 = Set of possible actions 𝑟(𝑠𝑡 , 𝑎𝑡) = Reward function

•Transition is now decided by states & actions: 𝒯𝑖,𝑗,𝑘 = 𝑝 𝑠𝑡+1 = 𝑖 𝑠𝑡 = 𝑗, 𝑎𝑡 = 𝑘)

•An agent has a policy 𝜋𝜃, which chooses action 𝑎 given the state 𝑠. (𝜃=Parameters)

Markov Decision Process (MDP)

•The reward 𝑟(𝑠, 𝑎) tells how good that state-action pair was.

•𝑎~𝜋𝜃(⋅ |𝑠) for stochastic policy, 𝑎 = 𝜋𝜃 𝑠 for deterministic policy.

•e.g., Breakout: Reward +1 for each block break (Dense reward)

: Reward +100 only on breaking every block (Sparse reward)

initial
state

distribution

𝑠1

𝑎1

𝜋𝜃(𝑎1|𝑠1)

𝑠2

𝑎2

𝑝(𝑠1)
𝑠3

𝑎3

…
𝑟(𝑠1, 𝑎1) 𝑟(𝑠2, 𝑎2)

𝜋𝜃(𝑎2|𝑠2)

Markov Decision Process (MDP)

Temporal View DiagramState View Example

states actions

•Also has Markov property:

𝑝 𝑠𝑡+1 = 𝑖 𝑠𝑡 = 𝑗, 𝑎𝑡 = 𝑘, 𝑠𝑡−1 = 𝑗′, 𝑎𝑡−1 = 𝑘′, … = 𝑝(𝑠𝑡+1 = 𝑖|𝑠𝑡 = 𝑗, 𝑎𝑡 = 𝑘)

•MDP + Observation space

•ℳ = 𝒮,𝒜,𝒪, 𝒯, ℰ, 𝑟 , where 𝒮 = Set of possible states 𝒯 = Transition probabilities

𝒜 = Set of possible actions 𝑟(𝑠𝑡 , 𝑎𝑡) = Reward function

•States vs Observations
•States are ‘perfect description’ of the environment (e.g., 3D position, motor angle, …)

Partially Observed Markov Decision Process (POMDP)

𝒪 = Set of possible observations ℰ = Emission function

•Observations are generated from states via (unknown) emission function (e.g., image observation)

•Often, the true state cannot be fully induced from the observation.

(e.g., dog training example – frisbee goes over the fence)

In fact, both Breakout and Dog Training examples are based on POMDP!

Partially Observed Markov Decision Process (POMDP)

𝑜1

𝑎1

𝜋𝜃 𝑎1 𝑜1)

𝑜2

𝑎2

𝜋𝜃

𝑜3

𝑎3

…

𝑠1 𝑠2
𝑝(𝑠1)

𝑠3
𝑝(𝑜1|𝑠1) 𝑝(𝑜2|𝑠2)

emission

POMDP is commonly used in research, but here we will mostly use MDP.

Temporal View Diagram

𝑟(𝑠1, 𝑎1) 𝑟(𝑠2, 𝑎2)

no access
to state

Again, What is RL?

“Maximizing the expected total reward

within an environment.”
MDP / POMDP

𝑠1

𝑎1

𝜋(𝑎1|𝑠1)

𝑠2

𝑎2

𝑝(𝑠1)
𝑠3

𝑎3

…
𝑟(𝑠1, 𝑎1) 𝑟(𝑠2, 𝑎2)

𝜋(𝑎2|𝑠2)

Sum of 𝑟 𝑠𝑡, 𝑎𝑡 ?

Expected Total Reward
•Given a (fixed) policy 𝜋, there are two ways to compute its expected total reward.

1. Expectation over trajectories
•Trajectory 𝜏 : A single ‘episode’ of the environment (e.g., one game of Breakout)

𝜏 = 𝑠1, 𝑎1, 𝑠2, 𝑎2, … 𝑠𝑇 , 𝑎𝑇 where at~𝜋𝜃 𝑎𝑡 𝑠𝑡 , 𝑠𝑡+1~𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

Then the probability that 𝜋𝜃 goes through 𝜏 is : 𝑝𝜃 𝜏 = 𝑝 𝑠1 ς𝑡=1
𝑇 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 .

Objective function of RL (Trajectory based)

•Each trajectory has its own probability and ‘return’. We want to maximize their expected value!

And the return of 𝜏 (total reward sum) is : 𝑟 𝜏 = σ𝑡=1
𝑇 𝑟(𝑠𝑡, 𝑎𝑡).

Our objective, maximize the expected return : 𝒥 𝜃 = 𝔼𝜏~𝑝𝜃(𝜏) 𝑟 𝜏 = σ𝜏 𝑝𝜃 𝜏 𝑟 𝜏 .

•This defines the optimal policy: 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝒥 𝜃 , and 𝜋∗ = 𝜋𝜃∗

sum of rewards

Expected Total Reward

2. Expectation over state-action pairs
•A little trickier, but very important as well.

𝑝 𝑠𝑡 , 𝑎𝑡 ≜ The probability of being in state 𝑠 at timestep 𝑡 (in any trajectory), then taking action 𝑎.

Then, the expected total reward is now a sum over all possible timesteps, states, and actions.

Objective function of RL (State-action based)

•Roughly, this dissects trajectories into a bunch of 𝑠𝑡 , 𝑎𝑡 ’s, summing their rewards individually.

𝒥 𝜃 = σ𝑡=1
𝑇 σ𝑠𝑡∈𝒮

σ𝑎𝑡∈𝒜
𝑝𝜃 𝑠𝑡, 𝑎𝑡 𝑟 𝑠𝑡 , 𝑎𝑡 = σ𝑡=1

𝑇 𝔼 𝑠𝑡,𝑎𝑡 ~𝑝𝜃(𝑠𝑡,𝑎𝑡)
𝑟 𝑠𝑡 , 𝑎𝑡

•For those curious, 𝑝𝜃 𝑠𝑡, 𝑎𝑡 = σ𝑠1∈𝒮
𝑝 𝑠1 σ𝑎1∈𝒜

𝜋𝜃 𝑎1|𝑠1 σ𝑠2∈𝒮
𝑝 𝑠2 𝑠1, 𝑎1 σ𝑎2∈𝒜

𝜋𝜃 𝑎2|𝑠2 ⋯

⋯ σ𝑠𝑡−1∈𝒮
𝑝 𝑠𝑡−1 𝑠𝑡−2, 𝑎𝑡−2 σ𝑎𝑡−1∈𝒜

𝜋𝜃 𝑎𝑡−1|𝑠𝑡−1 ∗ 𝑝 𝑠𝑡 𝑠𝑡−1, 𝑎𝑡−1 𝜋𝜃(𝑎𝑡|𝑠𝑡)

•We see similar bits in both formulations: σ𝑡=1
𝑇 and 𝑟 𝑠𝑡 , 𝑎𝑡 .

→ Both are computing the same sum of rewards, but in a ‘different order’!

Why Expectation?
•A lot of benefits, but smoothness is probably the core.

•Most reward functions are non-differentiable, let alone continuous (e.g., step function).

•Taking expectation over these, however, is an easy way to make them differentiable,

allowing us to use methods from ML and DL such as gradient descent.

•Example from lecture: Auto-Driving
•Two actions: Fall (reward -1), Don’t fall (reward +1).

•Assume a single step environment (i.e., 𝑇 = 1).

•Policy 𝜋 : 𝑝 𝐹𝑎𝑙𝑙|𝐷𝑟𝑖𝑣𝑖𝑛𝑔 = 𝜃, 𝑝 𝐷𝑜𝑛′𝑡 𝑓𝑎𝑙𝑙|𝐷𝑟𝑖𝑣𝑖𝑛𝑔 = 1 − 𝜃. (𝜃 ∈ 0, 1)

•Although the reward function is a step function, the expected reward is continuous on 𝜃!

𝔼𝜃 𝑟 𝑠, 𝑎 = 𝜃 ∗ −1 + 1 − 𝜃 ∗ +1 = 1 − 2𝜃

•Indeed, a gradient ‘ascent’ on the expected reward will push 𝜃 towards 0!

Interlude
•So far…

•Definition of RL

•Definition of the environment (+ Markov property)

•Definition of objective function in RL

In RL, an agent performs actions given the states/observations,
in order to maximize the expected total reward within an environment.

𝑠1

𝑎1

𝜋(𝑎1|𝑠1)

𝑠2

𝑎2

𝑝(𝑠1)
𝑠3

𝑎3

…
𝑟(𝑠1, 𝑎1) 𝑟(𝑠2, 𝑎2)

𝜋(𝑎2|𝑠2)

𝒥 𝜃 = 𝔼𝜏~𝑝𝜃(𝜏) 𝑟 𝜏 = σ𝑡=1
𝑇 𝔼 𝑠𝑡,𝑎𝑡 ~𝑝𝜃(𝑠𝑡,𝑎𝑡)

𝑟 𝑠𝑡 , 𝑎𝑡

Interlude
•From now on…

•Introduction to value functions (an extremely important concept in RL)

•A rough sketch of algorithms for RL (that will come in future lectures)

•There’s no need to fully understand the next pages.

•Primary focus on understanding the contents in the first half.

•The big picture in the next half is absolutely useful, too.

Value Functions
•Value functions evaluate the policy 𝜋𝜃 on specific states and actions.

•cf) ℐ(𝜃): Evaluates the policy in aggregate.

•Q-function
•𝑄𝜋 𝑠𝑡, 𝑎𝑡 = σ𝑡′=𝑡

𝑇 𝔼𝜋𝜃[𝑟(𝑠𝑡′ , 𝑎𝑡′)|𝑠𝑡, 𝑎𝑡]

•What it computes: “If we take 𝑎𝑡 at 𝑠𝑡, then follow 𝜋𝜃 afterwards, what’s the expected return?”

•What it means: “For 𝜋𝜃, how good was the state-action 𝑠𝑡 , 𝑎𝑡 ?” = “Should 𝜋𝜃 prefer 𝑠𝑡 , 𝑎𝑡 ?”

•Value function
•𝑉𝜋 𝑠𝑡 = σ𝑡′=𝑡

𝑇 𝔼𝜋𝜃[𝑟(𝑠𝑡′ , 𝑎𝑡′)|𝑠𝑡] = σ𝑎𝑡~𝜋(𝑎𝑡|𝑠𝑡)
σ𝑡′=𝑡
𝑇 𝔼𝜋𝜃[𝑟(𝑠𝑡′ , 𝑎𝑡′)|𝑠𝑡, 𝑎𝑡] = 𝔼𝑎𝑡~𝜋(𝑎𝑡|𝑠𝑡)[𝑄

𝜋(𝑠𝑡, 𝑎𝑡)]

•What it computes: “If we follow 𝜋𝜃 starting from 𝑠𝑡, what’s the expected return?”

•What it means: “For 𝜋𝜃, how good was the state 𝑠𝑡?” = “Should 𝜋𝜃 prefer 𝑠𝑡?”

Value Functions
•Value function can express the objective function 𝒥(𝜃).

•What it computes: “If we follow 𝜋𝜃 starting from 𝑠1, what’s the expected return?”

•How do we get this? Where can we use this?

•We can use 𝑄𝜋 or 𝑉𝜋 to ‘improve’ the policy 𝜋𝜃! → Value-based methods

•We can use 𝑄𝜋 or 𝑉𝜋 to directly estimate the gradient of 𝒥 𝜃 ! → Actor-Critic methods

𝔼𝑠1~𝑝 𝑠1 𝑉𝜋 𝑠1 = 𝒥 𝜃

If there’s only one initial state (i.e., deterministic) : 𝑉𝜋 𝑠1 = 𝒥 𝜃

Value function and 𝒥(𝜃)

= “From start to finish, how many reward would 𝜋𝜃 get?”

= “What’s the expected return of 𝜋𝜃?” = 𝒥 𝜃

•𝑄𝜋 and 𝑉𝜋 can be obtained via Bellman equation.

Types of RL Algorithms
•A whole catalog of algorithms, each with their own strengths and weaknesses.

•Policy Gradient: Directly optimize 𝒥 𝜃 by gradient ascent, 𝜃 ≔ 𝜃 + ∇𝜃𝒥(𝜃).

•Value-based algorithms: Focus on estimating value functions 𝑄, 𝑉.

•Actor-Critic: Estimate the value functions 𝑄, 𝑉, use it to directly optimize 𝒥 𝜃 by gradient ascent.

•Model-based RL: Focus on estimating the environment itself (transition model).

•No matter the type, they have the same anatomy.

Fit a model /
Estimate the return

Improve policy#2

Generate samples
(by running policy#1)

On-policy: policy#1 = policy#2
Off-policy: policy#1 ≠ policy#2

PG: Directly use the returns
Value: Use samples to learn 𝑄, 𝑉
AC: Use samples to learn 𝑄, 𝑉
Model: Use samples to learn
the environment itself

PG: Directly optimize 𝐽(𝜃)
Value: Update policy by ‘greed’
AC: Directly optimize 𝐽(𝜃)
Model: Searching(planning), etc.

What Should I Consider?
•Sample efficiency

•How many samples does the algorithm require?

•May be a problem when samples are hard to get (e.g., real-life robots)

•May be a problem even with simulators (e.g., Breakout takes 200M steps = 10+ years of playtime)

•Stability / Convergence guarantee
•Unlike supervised learning, many RL algorithms don’t directly optimize the objective function.

(The obvious exception being policy gradient methods)

•With deep neural networks, there’s no guarantee that these methods can improve the policy.

•…although many tricks and hyperparameters can be implemented to make it happen.

•e.g., Off vs On-policy: Off-policy is more sample efficient but may cause instability.

•Environment

•MDP vs POMDP: Use algorithms designed for partial observability, or use recurrence.

•Continuous vs Discrete action space: Can’t use value-based methods on continuous actions!

•Episodic vs Infinite horizon: The former is often assumed.

•Ease of use
•Some methods are quite complicated and/or have sensitive hyperparameters.

•If unsure, using simpler methods may be a good place to start.

e.g., TRPO vs PPO: The latter heavily simplifies the former AND performs better.

What Should I Consider?

e.g., Breakout = Discrete actions (L/R), Robot Dog = Continuous actions (Motor torques)

Thank you!

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22

