# Introduction to Reinforcement Learning

CS285 Deep Reinforcement Learning Lecture 2

Kim DongHu

## What is RL?

"Maximizing the expected total reward?
within an environment."

# **Introductory Examples**

Maximizing the expected total reward within an environment.

Player



(Robot) Dog



**Get as much score as possible in Atari Breakout!** 

Get as many treats as possible from the trainer!

# **Introductory Examples**

In RL, an agent performs actions given the states/observations, in order to maximize the expected total reward within an environment.



**Get as much score as possible in Atari Breakout!** 



Get as many treats as possible from the trainer!

#### **Markov Chain**

- $\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$ , where
  - S = Set of possible states
  - T = Transition probabilities
- $\mathcal{T}$  can be expressed as a matrix:  $\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$  ...which can be used as a state transition operator

e.g., 
$$\begin{bmatrix} 0 & 0 & 1/2 \\ 1 & 2/3 & 1/2 \\ 0 & 1/3 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 39/54 \\ 1/9 \end{bmatrix}$$
state distribution at time  $t = 2$ 
an arbitrary initial state distribution ( $t = 1$ )



$$\mathcal{T} = \begin{bmatrix} 0 & 0 & 1/2 \\ 1 & 2/3 & 1/2 \\ 0 & 1/3 & 0 \end{bmatrix}$$

But why use this? Markov property!

# **Markov Property**

A fundamental base of RL: "History doesn't matter"

Transitions in 1, ..., t - 1 do NOT affect future transitions (independence).

Markov property

$$p(s_{t+1} = i | s_t = j, s_{t-1} = j', s_{t-2} = j'', \dots) = p(s_{t+1} = i | s_t = j)$$

- All future theorems and algorithms will be based on this property!
  - Policy Gradient Theorem
  - Bellman Equation
  - ...and many more

# **Markov Decision Process (MDP)**

- Markov Chain + Actions + Rewards
- $\mathcal{M} = \{S, \mathcal{A}, \mathcal{T}, r\}$ , where S = Set of possible states  $\mathcal{T} = \text{Transition probabilities}$   $\mathcal{A} = \text{Set of possible actions}$   $r(s_t, a_t) = \text{Reward function}$
- An agent has a policy  $\pi_{\theta}$ , which chooses action a given the state s. ( $\theta$ =Parameters)
  - $a \sim \pi_{\theta}(\cdot | s)$  for stochastic policy,  $a = \pi_{\theta}(s)$  for deterministic policy.
- Transition is now decided by states & actions:  $T_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$
- The reward r(s, a) tells how good that state-action pair was.
  - e.g., Breakout: Reward +1 for each block break (Dense reward)
    : Reward +100 only on breaking every block (Sparse reward)

# **Markov Decision Process (MDP)**

Also has Markov property:

$$p(s_{t+1} = i | s_t = j, a_t = k, s_{t-1} = j', a_{t-1} = k', ...) = p(s_{t+1} = i | s_t = j, a_t = k)$$



State View Example

Temporal View Diagram

## Partially Observed Markov Decision Process (POMDP)

- MDP + Observation space
- $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}$ , where  $\mathcal{S} = \text{Set of possible states}$   $\mathcal{T} = \text{Transition probabilities}$   $\mathcal{A} = \text{Set of possible actions}$   $\mathcal{T} = \text{Transition probabilities}$   $\mathcal{T} = \text{Transition probabilities}$
- States vs Observations
  - States are 'perfect description' of the environment (e.g., 3D position, motor angle, ...)
  - Observations are generated from states via (unknown) emission function (e.g., image observation)
  - Often, the true state cannot be fully induced from the observation.
     (e.g., dog training example frisbee goes over the fence)
    - In fact, both Breakout and Dog Training examples are based on POMDP!



#### Partially Observed Markov Decision Process (POMDP)

Temporal View Diagram



POMDP is commonly used in research, but here we will mostly use MDP.

# Again, What is RL?

"Maximizing the expected total reward

within an environment."

MDP / POMDP



Sum of  $r(s_t, a_t)$ ?

# **Expected Total Reward**

- Given a (fixed) policy  $\pi$ , there are two ways to compute its expected total reward.
- 1. Expectation over trajectories
  - Trajectory  $\tau$ : A single 'episode' of the environment (e.g., one game of Breakout)
  - Each trajectory has its own probability and 'return'. We want to maximize their expected value!

sum of rewards

Objective function of RL (Trajectory based)

$$\tau = (s_1, a_1, s_2, a_2, \dots s_T, a_T)$$
 where  $a_t \sim \pi_{\theta}(a_t | s_t)$ ,  $s_{t+1} \sim p(s_{t+1} | s_t, a_t)$ 

Then the probability that  $\pi_{\theta}$  goes through  $\tau$  is :  $p_{\theta}(\tau) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$ .

And the return of  $\tau$  (total reward sum) is :  $r(\tau) = \sum_{t=1}^{T} r(s_t, a_t)$ .

Our objective, maximize the expected return :  $\mathcal{J}(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[r(\tau)] = \sum_{\tau} p_{\theta}(\tau)r(\tau)$ .

• This defines the optimal policy:  $\theta^* = argmax_\theta \mathcal{J}(\theta)$ , and  $\pi^* = \pi_{\theta^*}$ 

# **Expected Total Reward**

- 2. Expectation over state-action pairs
  - A little trickier, but very important as well.
  - Roughly, this dissects trajectories into a bunch of  $(s_t, a_t)$ 's, summing their rewards individually.

Objective function of RL (State-action based)

 $p(s_t, a_t) \triangleq \text{The probability of being in state } s \text{ at timestep } t \text{ (in any trajectory), then taking action } a.$ 

Then, the expected total reward is now a sum over all possible timesteps, states, and actions.

$$\mathcal{J}(\theta) = \sum_{t=1}^{T} \sum_{s_t \in \mathcal{S}} \sum_{a_t \in \mathcal{A}} p_{\theta}(s_t, a_t) r(s_t, a_t) = \sum_{t=1}^{T} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} [r(s_t, a_t)]$$

- We see similar bits in both formulations:  $\sum_{t=1}^{T}$  and  $r(s_t, a_t)$ .
  - → Both are computing the same sum of rewards, but in a 'different order'!
- For those curious,  $p_{\theta}(s_t, a_t) = \sum_{s_1 \in \mathcal{S}} p(s_1) \sum_{a_1 \in \mathcal{A}} \pi_{\theta}(a_1|s_1) \sum_{s_2 \in \mathcal{S}} p(s_2|s_1, a_1) \sum_{a_2 \in \mathcal{A}} \pi_{\theta}(a_2|s_2) \cdots \sum_{s_{t-1} \in \mathcal{S}} p(s_{t-1}|s_{t-2}, a_{t-2}) \sum_{a_{t-1} \in \mathcal{A}} \pi_{\theta}(a_{t-1}|s_{t-1}) * p(s_t|s_{t-1}, a_{t-1}) \pi_{\theta}(a_t|s_t)$

# Why Expectation?

- A lot of benefits, but smoothness is probably the core.
  - Most reward functions are non-differentiable, let alone continuous (e.g., step function).
  - Taking expectation over these, however, is an easy way to make them differentiable, allowing us to use methods from ML and DL such as gradient descent.
- Example from lecture: Auto-Driving
  - Two actions: Fall (reward -1), Don't fall (reward +1).
  - Assume a single step environment (i.e., T=1).



- Policy  $\pi : p(Fall|Driving) = \theta$ ,  $p(Don't fall|Driving) = 1 \theta$ .  $(\theta \in [0,1])$
- Although the reward function is a step function, the expected reward is continuous on  $\theta$ !
- Indeed, a gradient 'ascent' on the expected reward will push  $\theta$  towards 0!

$$\mathbb{E}_{\theta}[r(s,a)] = (\theta * -1) + ((1 - \theta) * +1) = 1 - 2\theta$$

## Interlude

- So far...
  - Definition of RL

In RL, an agent performs actions given the states/observations, in order to maximize the expected total reward within an environment.

Definition of the environment (+ Markov property)



Definition of objective function in RL

$$\mathcal{J}(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[r(\tau)] = \sum_{t=1}^{T} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)}[r(s_t, a_t)]$$

#### Interlude

- From now on...
  - Introduction to value functions (an extremely important concept in RL)
  - A rough sketch of algorithms for RL (that will come in future lectures)
- There's no need to fully understand the next pages.
  - Primary focus on understanding the contents in the first half.
  - The big picture in the next half is absolutely useful, too.

#### **Value Functions**

- Value functions evaluate the policy  $\pi_{\theta}$  on specific states and actions.
  - cf)  $\mathcal{I}(\theta)$ : Evaluates the policy in aggregate.

#### Q-function

- $Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t]$
- What it computes: "If we take  $a_t$  at  $s_t$ , then follow  $\pi_{\theta}$  afterwards, what's the expected return?"
- What it means: "For  $\pi_{\theta}$ , how good was the state-action  $(s_t, a_t)$ ?" = "Should  $\pi_{\theta}$  prefer  $(s_t, a_t)$ ?"

#### Value function

- $V^{\pi}(s_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t] = \sum_{a_t \sim \pi(a_t|s_t)} \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t] = \mathbb{E}_{a_t \sim \pi(a_t|s_t)}[Q^{\pi}(s_t, a_t)]$
- What it computes: "If we follow  $\pi_{\theta}$  starting from  $s_t$ , what's the expected return?"
- What it means: "For  $\pi_{\theta}$ , how good was the state  $s_t$ ?" = "Should  $\pi_{\theta}$  prefer  $s_t$ ?"

## **Value Functions**

• Value function can express the objective function  $\mathcal{J}(\theta)$ .

Value function and  $\mathcal{J}(\theta)$ 

$$\mathbb{E}_{s_1 \sim p(s_1)}[V^{\pi}(s_1)] = \mathcal{J}(\theta)$$

If there's only one initial state (i.e., deterministic):  $V^{\pi}(s_1) = \mathcal{J}(\theta)$ 

- What it computes: "If we follow  $\pi_{\theta}$  starting from  $s_1$ , what's the expected return?"
  - = "From start to finish, how many reward would  $\pi_{\theta}$  get?"
  - = "What's the expected return of  $\pi_{\theta}$ ?" =  $\mathcal{J}(\theta)$
- How do we get this? Where can we use this?
  - $Q^{\pi}$  and  $V^{\pi}$  can be obtained via Bellman equation.
  - We can use  $Q^{\pi}$  or  $V^{\pi}$  to 'improve' the policy  $\pi_{\theta}! \rightarrow Value$ -based methods
  - We can use  $Q^{\pi}$  or  $V^{\pi}$  to directly estimate the gradient of  $\mathcal{J}(\theta)! \rightarrow \text{Actor-Critic methods}$

# Types of RL Algorithms

- A whole catalog of algorithms, each with their own strengths and weaknesses.
  - Policy Gradient: Directly optimize  $\mathcal{J}(\theta)$  by gradient ascent,  $\theta \coloneqq \theta + \nabla_{\theta} \mathcal{J}(\theta)$ .
  - Value-based algorithms: Focus on estimating value functions Q, V.
  - Actor-Critic: Estimate the value functions Q, V, use it to directly optimize  $\mathcal{J}(\theta)$  by gradient ascent.
  - Model-based RL: Focus on estimating the environment itself (transition model).
- No matter the type, they have the same anatomy.



PG: Directly use the returns
Value: Use samples to learn Q, V
AC: Use samples to learn Q, V
Model: Use samples to learn
the environment itself

PG: Directly optimize  $J(\theta)$ Value: Update policy by 'greed' AC: Directly optimize  $J(\theta)$ 

Model: Searching(planning), etc.

## What Should I Consider?

- Sample efficiency
  - How many samples does the algorithm require?
  - May be a problem when samples are hard to get (e.g., real-life robots)
  - May be a problem even with simulators (e.g., Breakout takes 200M steps = 10+ years of playtime)
  - e.g., Off vs On-policy: Off-policy is more sample efficient but may cause instability.
- Stability / Convergence guarantee
  - Unlike supervised learning, many RL algorithms don't directly optimize the objective function. (The obvious exception being policy gradient methods)
  - With deep neural networks, there's no guarantee that these methods can improve the policy.
  - ...although many tricks and hyperparameters can be implemented to make it happen.

#### What Should I Consider?

#### Environment

- MDP vs POMDP: Use algorithms designed for partial observability, or use recurrence.
- Continuous vs Discrete action space: Can't use value-based methods on continuous actions!
   e.g., Breakout = Discrete actions (L/R), Robot Dog = Continuous actions (Motor torques)
- Episodic vs Infinite horizon: The former is often assumed.

#### Ease of use

- Some methods are quite complicated and/or have sensitive hyperparameters. e.g., TRPO vs PPO: The latter heavily simplifies the former AND performs better.
- If unsure, using simpler methods may be a good place to start.

# Thank you!